Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 940, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296968

RESUMO

In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) execute sequential thermogenesis to maintain body temperature during cold stimuli. BAT rapidly generates heat through brown adipocyte activation, and further iWAT gradually stimulates beige fat cell differentiation upon prolonged cold challenges. However, fat depot-specific regulatory mechanisms for thermogenic activation of two fat depots are poorly understood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein elevation by controlling protein stability, which stimulates thermogenic gene expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT thermogenic activity via GABPα upregulation. Moreover, upon prolonged cold stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adipogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degradation, rather than GABPα, to activate PPARγ. Together, current findings propose fat depot-specific regulatory mechanisms for temporal activation of adipose thermogenesis.


Assuntos
Tecido Adiposo Bege , Ubiquitina , Animais , Humanos , Camundongos , Tecido Adiposo Bege/metabolismo , Ubiquitina/metabolismo , Ligases/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/metabolismo , Termogênese , Camundongos Endogâmicos C57BL , Temperatura Baixa , Mamíferos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Cell Rep ; 41(11): 111806, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516764

RESUMO

In mammals, brown adipose tissue (BAT) is specialized to conduct non-shivering thermogenesis for survival under cold acclimation. Although emerging evidence suggests that lipid metabolites are essential for heat generation in cold-activated BAT, the underlying mechanisms of lipid uptake in BAT have not been thoroughly understood. Here, we show that very-low-density lipoprotein (VLDL) uptaken by VLDL receptor (VLDLR) plays important roles in thermogenic execution in BAT. Compared with wild-type mice, VLDLR knockout mice exhibit impaired thermogenic features. Mechanistically, VLDLR-mediated VLDL uptake provides energy sources for mitochondrial oxidation via lysosomal processing, subsequently enhancing thermogenic activity in brown adipocytes. Moreover, the VLDL-VLDLR axis potentiates peroxisome proliferator activated receptor (PPAR)ß/δ activity with thermogenic gene expression in BAT. Accordingly, VLDL-induced thermogenic capacity is attenuated in brown-adipocyte-specific PPARß/δ knockout mice. Collectively, these data suggest that the VLDL-VLDLR axis in brown adipocytes is a key factor for thermogenic execution during cold exposure.


Assuntos
Tecido Adiposo Marrom , PPAR beta , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , PPAR beta/metabolismo , Lipoproteínas VLDL/metabolismo , Termogênese/genética , Adipócitos Marrons/metabolismo , Camundongos Knockout , Mamíferos
3.
Mol Cells ; 45(8): 534-536, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950454

RESUMO

Hypoxia-inducible factor 2α (HIF2α)-dependent thermogenic regulation upon temperature changes. Upon cold exposure, HIF2α is stabilized and fine-tunes thermogenic activity via PKA Cα (protein kinase A catalytic subunit α) regulation. HIF2α also coordinates beige adipocyte plasticity to actively respond to temperature shift.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Termogênese , Adipócitos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Temperatura Baixa , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
4.
Nat Metab ; 4(7): 918-931, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788760

RESUMO

DNA methylation is a crucial epigenetic modification in the establishment of cell-type-specific characteristics. However, how DNA methylation is selectively reprogrammed at adipocyte-specific loci during adipogenesis remains unclear. Here, we show that the transcription factor, C/EBPδ, and the DNA methylation eraser, TET3, cooperatively control adipocyte differentiation. We perform whole-genome bisulfite sequencing to explore the dynamics and regulatory mechanisms of DNA methylation in adipocyte differentiation. During adipogenesis, DNA methylation selectively decreases at adipocyte-specific loci carrying the C/EBP binding motif, which correlates with the activity of adipogenic promoters and enhancers. Mechanistically, we find that C/EBPδ recruits a DNA methylation eraser, TET3, to catalyse DNA demethylation at the C/EBP binding motif and stimulate the expression of key adipogenic genes. Ectopic expression of TET3 potentiates in vitro and in vivo adipocyte differentiation and recovers downregulated adipogenic potential, which is observed in aged mice and humans. Taken together, our study highlights how targeted reprogramming of DNA methylation through cooperative action of the transcription factor C/EBPδ, and the DNA methylation eraser TET3, controls adipocyte differentiation.


Assuntos
Adipogenia , Dioxigenases , Adipogenia/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular/genética , Metilação de DNA , Dioxigenases/genética , Epigênese Genética , Humanos , Camundongos , Fatores de Transcrição/genética
5.
Nat Commun ; 13(1): 3268, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672324

RESUMO

Thermogenic adipocytes generate heat to maintain body temperature against hypothermia in response to cold. Although tight regulation of thermogenesis is required to prevent energy sources depletion, the molecular details that tune thermogenesis are not thoroughly understood. Here, we demonstrate that adipocyte hypoxia-inducible factor α (HIFα) plays a key role in calibrating thermogenic function upon cold and re-warming. In beige adipocytes, HIFα attenuates protein kinase A (PKA) activity, leading to suppression of thermogenic activity. Mechanistically, HIF2α suppresses PKA activity by inducing miR-3085-3p expression to downregulate PKA catalytic subunit α (PKA Cα). Ablation of adipocyte HIF2α stimulates retention of beige adipocytes, accompanied by increased PKA Cα during re-warming after cold stimuli. Moreover, administration of miR-3085-3p promotes beige-to-white transition via downregulation of PKA Cα and mitochondrial abundance in adipocyte HIF2α deficient mice. Collectively, these findings suggest that HIF2α-dependent PKA regulation plays an important role as a thermostat through dynamic remodeling of beige adipocytes.


Assuntos
Adipócitos Bege , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , MicroRNAs , Adipócitos , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Baixa , Camundongos , MicroRNAs/metabolismo , Termogênese/genética
6.
Diabetes ; 71(7): 1373-1387, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35476750

RESUMO

Excessive hepatic glucose production (HGP) is a key factor promoting hyperglycemia in diabetes. Hepatic cryptochrome 1 (CRY1) plays an important role in maintaining glucose homeostasis by suppressing forkhead box O1 (FOXO1)-mediated HGP. Although downregulation of hepatic CRY1 appears to be associated with increased HGP, the mechanism(s) by which hepatic CRY1 dysregulation confers hyperglycemia in subjects with diabetes is largely unknown. In this study, we demonstrate that a reduction in hepatic CRY1 protein is stimulated by elevated E3 ligase F-box and leucine-rich repeat protein 3 (FBXL3)-dependent proteasomal degradation in diabetic mice. In addition, we found that GSK3ß-induced CRY1 phosphorylation potentiates FBXL3-dependent CRY1 degradation in the liver. Accordingly, in diabetic mice, GSK3ß inhibitors effectively decreased HGP by facilitating the effect of CRY1-mediated FOXO1 degradation on glucose metabolism. Collectively, these data suggest that tight regulation of hepatic CRY1 protein stability is crucial for maintaining systemic glucose homeostasis.


Assuntos
Criptocromos , Diabetes Mellitus Experimental , Hiperglicemia , Animais , Criptocromos/genética , Criptocromos/metabolismo , Diabetes Mellitus Experimental/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/fisiologia , Glucose/metabolismo , Glucose/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Hiperglicemia/metabolismo , Fígado/metabolismo , Camundongos
7.
Cell Metab ; 34(5): 702-718.e5, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35417665

RESUMO

Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability. Additionally, we discovered that SREBP1c may play a key role in genome stability and senescence in adipocytes by modulating DNA-damage responses. Unexpectedly, SREBP1c interacted with PARP1 and potentiated PARP1 activity during DNA repair, independent of its canonical lipogenic function. The genetic depletion of SREBP1c accelerated adipocyte senescence, leading to immune cell recruitment into obese adipose tissue. These deleterious effects provoked unhealthy adipose tissue remodeling and insulin resistance in obesity. In contrast, the elimination of senescent adipocytes alleviated adipose tissue inflammation and improved insulin resistance. These findings revealed distinctive roles of SREBP1c-PARP1 axis in the regulation of adipocyte senescence and will help decipher the metabolic significance of senescence in obesity.


Assuntos
Resistência à Insulina , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Humanos , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
8.
Cell Metab ; 34(3): 458-472.e6, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021043

RESUMO

In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.


Assuntos
Adipócitos , Tecido Adiposo , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Animais , Mamíferos , Células-Tronco/metabolismo , Gordura Subcutânea/metabolismo
9.
Diabetes ; 70(12): 2756-2770, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34521642

RESUMO

Reactive oxygen species (ROS) are associated with various roles of brown adipocytes. Glucose-6-phosphate dehydrogenase (G6PD) controls cellular redox potentials by producing NADPH. Although G6PD upregulates cellular ROS levels in white adipocytes, the roles of G6PD in brown adipocytes remain elusive. Here, we found that G6PD defect in brown adipocytes impaired thermogenic function through excessive cytosolic ROS accumulation. Upon cold exposure, G6PD-deficient mutant (G6PDmut) mice exhibited cold intolerance and downregulated thermogenic gene expression in brown adipose tissue (BAT). In addition, G6PD-deficient brown adipocytes had increased cytosolic ROS levels, leading to extracellular signal-regulated kinase (ERK) activation. In BAT of G6PDmut mice, administration of antioxidant restored the thermogenic activity by potentiating thermogenic gene expression and relieving ERK activation. Consistently, body temperature and thermogenic execution were rescued by ERK inhibition in cold-exposed G6PDmut mice. Taken together, these data suggest that G6PD in brown adipocytes would protect against cytosolic oxidative stress, leading to cold-induced thermogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Glucosefosfato Desidrogenase/genética , Espécies Reativas de Oxigênio/metabolismo , Termogênese/genética , Células 3T3-L1 , Tecido Adiposo Marrom/metabolismo , Animais , Células Cultivadas , Glucosefosfato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Nat Commun ; 11(1): 578, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996685

RESUMO

Lipid droplets (LDs) are key subcellular organelles for regulating lipid metabolism. Although several subcellular organelles participate in lipid metabolism, it remains elusive whether physical contacts between subcellular organelles and LDs might be involved in lipolysis upon nutritional deprivation. Here, we demonstrate that peroxisomes and peroxisomal protein PEX5 mediate fasting-induced lipolysis by stimulating adipose triglyceride lipase (ATGL) translocation onto LDs. During fasting, physical contacts between peroxisomes and LDs are increased by KIFC3-dependent movement of peroxisomes toward LDs, which facilitates spatial translocations of ATGL onto LDs. In addition, PEX5 could escort ATGL to contact points between peroxisomes and LDs in the presence of fasting cues. Moreover, in adipocyte-specific PEX5-knockout mice, the recruitment of ATGL onto LDs was defective and fasting-induced lipolysis is attenuated. Collectively, these data suggest that physical contacts between peroxisomes and LDs are required for spatiotemporal translocation of ATGL, which is escorted by PEX5 upon fasting, to maintain energy homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Jejum/efeitos adversos , Gotículas Lipídicas/metabolismo , Lipólise/fisiologia , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Análise Espaço-Temporal , Células 3T3-L1/metabolismo , Adipócitos/metabolismo , Animais , Caenorhabditis elegans , Sinais (Psicologia) , Citoesqueleto , Cinesinas/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nutrientes , Receptor 1 de Sinal de Orientação para Peroxissomos/genética , Peroxissomos/genética , Transdução de Sinais
11.
Mol Cell Biol ; 39(20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308132

RESUMO

Adipocytes have unique morphological traits in insulin sensitivity control. However, how the appearance of adipocytes can determine insulin sensitivity has not been understood. Here, we demonstrate that actin cytoskeleton reorganization upon lipid droplet (LD) configurations in adipocytes plays important roles in insulin-dependent glucose uptake by regulating GLUT4 trafficking. Compared to white adipocytes, brown/beige adipocytes with multilocular LDs exhibited well-developed filamentous actin (F-actin) structure and potentiated GLUT4 translocation to the plasma membrane in the presence of insulin. In contrast, LD enlargement and unilocularization in adipocytes downregulated cortical F-actin formation, eventually leading to decreased F-actin-to-globular actin (G-actin) ratio and suppression of insulin-dependent GLUT4 trafficking. Pharmacological inhibition of actin polymerization accompanied with impaired F/G-actin dynamics reduced glucose uptake in adipose tissue and conferred systemic insulin resistance in mice. Thus, our study reveals that adipocyte remodeling with different LD configurations could be an important factor to determine insulin sensitivity by modulating F/G-actin dynamics.


Assuntos
Actinas/metabolismo , Adipócitos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Citoesqueleto de Actina/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Adipócitos Brancos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Transporte Proteico
12.
Mol Cell Biol ; 39(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397073

RESUMO

Oxygen is a key molecule for efficient energy production in living organisms. Although aerobic organisms have adaptive processes to survive in low-oxygen environments, it is poorly understood how lipolysis, the first step of energy production from stored lipid metabolites, would be modulated during hypoxia. Here, we demonstrate that fasting-induced lipolysis is downregulated by hypoxia through the hypoxia-inducible factor (HIF) signaling pathway. In Caenorhabditis elegans and mammalian adipocytes, hypoxia suppressed protein kinase A (PKA)-stimulated lipolysis, which is evolutionarily well conserved. During hypoxia, the levels of PKA activity and adipose triglyceride lipase (ATGL) protein were downregulated, resulting in attenuated fasting-induced lipolysis. In worms, HIF stabilization was sufficient to moderate the suppressive effect of hypoxia on lipolysis through ATGL and PKA inhibition. These data suggest that HIF activation under hypoxia plays key roles in the suppression of lipolysis, which might preserve energy resources in both C. elegans and mammalian adipocytes.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Lipase/metabolismo , Células 3T3 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Lipídeos/fisiologia , Lipólise/efeitos dos fármacos , Lipólise/fisiologia , Camundongos , Nematoides , Fosforilação , Transdução de Sinais
13.
J Biol Chem ; 293(36): 13974-13988, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30042231

RESUMO

Lipid droplets are specialized cellular organelles that contain neutral lipid metabolites and play dynamic roles in energy homeostasis. Perilipin 1 (Plin1), one of the major lipid droplet-binding proteins, is highly expressed in adipocytes. In mice, Plin1 deficiency impairs peripheral insulin sensitivity, accompanied with reduced fat mass. However, the mechanisms underlying insulin resistance in lean Plin1 knockout (Plin1-/-) mice are largely unknown. The current study demonstrates that Plin1 deficiency promotes inflammatory responses and lipolysis in adipose tissue, resulting in insulin resistance. M1-type adipose tissue macrophages (ATMs) were higher in Plin1-/- than in Plin1+/+ mice on normal chow diet. Moreover, using lipidomics analysis, we discovered that Plin1-/- adipocytes promoted secretion of pro-inflammatory lipid metabolites such as prostaglandins, which potentiated monocyte migration. In lean Plin1-/- mice, insulin resistance was relieved by macrophage depletion with clodronate, implying that elevated pro-inflammatory ATMs might be attributable for insulin resistance under Plin1 deficiency. Together, these data suggest that Plin1 is required to restrain fat loss and pro-inflammatory responses in adipose tissue by reducing futile lipolysis to maintain metabolic homeostasis.


Assuntos
Tecido Adiposo/patologia , Inflamação/etiologia , Metabolismo dos Lipídeos , Perilipina-1/deficiência , Adipócitos/metabolismo , Animais , Resistência à Insulina , Lipólise , Macrófagos/patologia , Camundongos , Camundongos Knockout
14.
Diabetes ; 67(5): 791-804, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440067

RESUMO

Beige adipocytes can dissipate energy as heat. Elaborate communication between metabolism and gene expression is important in the regulation of beige adipocytes. Although lipid droplet (LD) binding proteins play important roles in adipose tissue biology, it remains unknown whether perilipin 3 (Plin3) is involved in the regulation of beige adipocyte formation and thermogenic activities. In this study, we demonstrate that Plin3 ablation stimulates beige adipocytes and thermogenic gene expression in inguinal white adipose tissue (iWAT). Compared with wild-type mice, Plin3 knockout mice were cold tolerant and displayed enhanced basal and stimulated lipolysis in iWAT, inducing peroxisome proliferator-activated receptor α (PPARα) activation. In adipocytes, Plin3 deficiency promoted PPARα target gene and uncoupling protein 1 expression and multilocular LD formation upon cold stimulus. Moreover, fibroblast growth factor 21 expression and secretion were upregulated, which was attributable to activated PPARα in Plin3-deficient adipocytes. These data suggest that Plin3 acts as an intrinsic protective factor preventing futile beige adipocyte formation by limiting lipid metabolism and thermogenic gene expression.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Gotículas Lipídicas/metabolismo , Lipólise/genética , PPAR alfa/metabolismo , Perilipina-3/genética , Termogênese/genética , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
J Biol Chem ; 291(39): 20315-28, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27496951

RESUMO

Protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent protein kinase composed of catalytic and regulatory subunits and involved in various physiological phenomena, including lipid metabolism. Here we demonstrated that the stoichiometric balance between catalytic and regulatory subunits is crucial for maintaining basal PKA activity and lipid homeostasis. To uncover the potential roles of each PKA subunit, Caenorhabditis elegans was used to investigate the effects of PKA subunit deficiency. In worms, suppression of PKA via RNAi resulted in severe phenotypes, including shortened life span, decreased egg laying, reduced locomotion, and altered lipid distribution. Similarly, in mammalian adipocytes, suppression of PKA regulatory subunits RIα and RIIß via siRNAs potently stimulated PKA activity, leading to potentiated lipolysis without increasing cAMP levels. Nevertheless, insulin exerted anti-lipolytic effects and restored lipid droplet integrity by antagonizing PKA action. Together, these data implicate the importance of subunit stoichiometry as another regulatory mechanism of PKA activity and lipid metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Metabolismo dos Lipídeos/fisiologia , Células 3T3-L1 , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Camundongos
16.
Mol Cell Biol ; 34(22): 4165-76, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25202121

RESUMO

Lipolysis is a delicate process involving complex signaling cascades and sequential enzymatic activations. In Caenorhabditis elegans, fasting induces various physiological changes, including a dramatic decrease in lipid contents through lipolysis. Interestingly, C. elegans lacks perilipin family genes which play a crucial role in the regulation of lipid homeostasis in other species. Here, we demonstrate that in the intestinal cells of C. elegans, a newly identified protein, lipid droplet protein 1 (C25A1.12; LID-1), modulates lipolysis by binding to adipose triglyceride lipase 1 (C05D11.7; ATGL-1) during nutritional deprivation. In fasted worms, lipid droplets were decreased in intestinal cells, whereas suppression of ATGL-1 via RNA interference (RNAi) resulted in retention of stored lipid droplets. Overexpression of ATGL-1 markedly decreased lipid droplets, whereas depletion of LID-1 via RNAi prevented the effect of overexpressed ATGL-1 on lipolysis. In adult worms, short-term fasting increased cyclic AMP (cAMP) levels, which activated protein kinase A (PKA) to stimulate lipolysis via ATGL-1 and LID-1. Moreover, ATGL-1 protein stability and LID-1 binding were augmented by PKA activation, eventually leading to increased lipolysis. These data suggest the importance of the concerted action of lipase and lipid droplet protein in the response to fasting signals via PKA to maintain lipid homeostasis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/metabolismo , Lipase/metabolismo , Lipólise , Animais , Caenorhabditis elegans/citologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Jejum , Mucosa Intestinal/metabolismo , Intestinos/citologia , Gotículas Lipídicas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...